Princess Hornpipe (1): Difference between revisions

Find traditional instrumental music
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Abctune
{{Abctune
|f_tune_title=Princess Hornpipe
|f_tune_title=Princess Hornpipe (1)
|f_aka=Coey's Hornpipe, London Clog (2), Miss Ferry's Hornpipe, Southern Shore (The), Tammany Ring, Wonder Hornpipe (The)
|f_aka=Coey's Hornpipe, Dandy Prince, London Clog (2), Miss Ferry's Hornpipe, Southern Shore (The), Tammany Ring, Wonder Hornpipe (The)
|f_country=United States
|f_country=United States
|f_genre=Contra
|f_genre=Contra
Line 38: Line 38:
<section begin=abc />
<section begin=abc />
X:1
X:1
T:Princess Hornpipe
T:Princess Hornpipe [1]
M:C|
M:C|
L:1/8
L:1/8

Latest revision as of 02:20, 31 July 2024


Princess Hornpipe (1)  Click on the tune title to see or modify Princess Hornpipe (1)'s annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Princess Hornpipe (1)
Query the Archive
Query the Archive
 Theme code Index    136L2 135L1
 Also known as    Coey's Hornpipe, Dandy Prince, London Clog (2), Miss Ferry's Hornpipe, Southern Shore (The), Tammany Ring, Wonder Hornpipe (The)
 Composer/Core Source    
 Region    United States
 Genre/Style    Contra
 Meter/Rhythm    Hornpipe/Clog
 Key/Tonic of    B
 Accidental    2 flats
 Mode    Ionian (Major)
 Time signature    2/2
 History    
 Structure    AABB
 Editor/Compiler    Biography:William Bradbury Ryan
 Book/Manuscript title    Book:Ryan's Mammoth Collection
 Tune and/or Page number    p. 131
 Year of publication/Date of MS    1883
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   (1)   




X:1 T:Princess Hornpipe [1] M:C| L:1/8 R:Hornpipe S:Ryan’s Mammoth Collection (1883) Z:AK/Fiddler’s Companion K:Bb B>fd>B G>ec>A | B>cd>B F2 B>A | B2e2 (3efe (3dcB | A2f2 (3fgf (3edc | B>fd>B G>ec>A | B>cd>B F2 B>A | G>gf>e d>cB>A |B2b2B2 :| |: (cB) | A>cf>=e f>dc>B | A>cf>=e f2f2 | =e>gb>g e>cd>e | f>ef>e f2_e2 | d>ef>d B>cd>B | c>de>c A>Bc>A | B>ba>g (3fgf (3edc | B2b2B2 :|