Peacemaker (The): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Abctune | {{Abctune | ||
|f_tune_title=Peacemaker (The) | |f_tune_title=Peacemaker (The) | ||
|f_aka=Peacemaker's Hornpipe (The), Ryth Wyth, Siocantaide (An), Siotadoir (An), Rhif Wyth, | |f_aka=Peacemaker's Hornpipe (The), Ryth Wyth, Siocantaide (An), Siotadoir (An), Rhif Wyth, Pibddawns Rhif Wyth, | ||
|f_country=England, Ireland | |f_country=England, Ireland | ||
|f_genre=Irish, Welsh | |f_genre=Irish, Welsh | ||
Line 51: | Line 51: | ||
|:(3DEF|gdBd gfed|cege cege| ae^ce ae^ce|(3ded (3cdc (3BcB A2| | |:(3DEF|gdBd gfed|cege cege| ae^ce ae^ce|(3ded (3cdc (3BcB A2| | ||
gdBd gfed|edef g2fe|dBGB cAFA|G2GF G2:|| | gdBd gfed|edef g2fe|dBGB cAFA|G2GF G2:|| | ||
</pre> | |||
<pre> | |||
X: 1 | |||
% | |||
T: Pibddawns Rhif Wyth | |||
R: hornpipe | |||
M: 4/4 | |||
L: 1/8 | |||
K: Fmaj | |||
F2 c2 B>AG>F | B>AB>c B2 A>G | F2 c2 B>AG>F | c>=Bc>d c>BA>G | | |||
F2 c>F B>AG>F | B2 (3cde f2 e>d | C>AF>A B>GE>G | F2 A2 F2 :| | |||
f>FA>c f>ed>c | B>df>d B>df>d | g>G=B>d g>fe>d | c>eg>e c>eg>e | | |||
f2 (3ABc f>ed>c | d>DF>B d2 e>d | c>AF>A B>G (3EFG | F2 A2 F2 :| | |||
</pre> | </pre> | ||
---- | ---- |
Revision as of 01:56, 14 October 2015
Tune annotations
X:1 T:Peacemaker, The M:C| L:1/8 R:Hornpipe S:O’Neill – Dance Music of Ireland: 1001 Gems (1907), No. 880 Z:AK/Fiddler’s Companion K:G A2|GBdB cBAG|cBcd c2 BA|GBdB cBAG|d2DD D2D2| GBdB cBAG|cBcd efge|dedc BGAF|G2G2G2:| |:d2|gfga gfed|cBcd c2c2|agab agfe|f2 dd d2 ef| gfga gfed|cBcd efge|dedc BGAF|G2G2G2:|]
X: 1 % T:Rhif Wyth R:hornpipe D:Cilmeri Z:Lesl M:C| L:1/8 Q:1/2=80 K:G (3DEF|G2d2 cBAG|cBcd c2BA|G2d2 cBAG|ded^c dGBA| G2d2 cBAG|edef g2fe|dBGB cAFA|G2GF G2:|| |:(3DEF|gdBd gfed|cege cege| ae^ce ae^ce|(3ded (3cdc (3BcB A2| gdBd gfed|edef g2fe|dBGB cAFA|G2GF G2:||
X: 1 % T: Pibddawns Rhif Wyth R: hornpipe M: 4/4 L: 1/8 K: Fmaj F2 c2 B>AG>F | B>AB>c B2 A>G | F2 c2 B>AG>F | c>=Bc>d c>BA>G | F2 c>F B>AG>F | B2 (3cde f2 e>d | C>AF>A B>GE>G | F2 A2 F2 :| f>FA>c f>ed>c | B>df>d B>df>d | g>G=B>d g>fe>d | c>eg>e c>eg>e | f2 (3ABc f>ed>c | d>DF>B d2 e>d | c>AF>A B>G (3EFG | F2 A2 F2 :|