Miss Wildman's Reel: Difference between revisions

Find traditional instrumental music
(Created page with "{{Abctune |f_tune_title=Miss Wildman's Reel |f_composer=Robert Mackintosh |f_country=Scotland |f_genre=Scottish |f_rhythm=Reel (single/double) |f_time_signature=4/4 |f_key=G |...")
 
No edit summary
 
Line 11: Line 11:
|f_structure=AAB
|f_structure=AAB
|f_book_title=A Fourth Collection of New Strathspey Reels
|f_book_title=A Fourth Collection of New Strathspey Reels
|f_collector=Robert MacIntosh
|f_collector=Robert Mackintosh
|f_year=1804
|f_year=1804
|f_page=p. 28
|f_page=p. 28

Latest revision as of 20:13, 10 December 2020


Miss Wildman's Reel  Click on the tune title to see or modify Miss Wildman's Reel's annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Miss Wildman's Reel
Query the Archive
Query the Archive
 Theme code Index    325L3 152H2H
 Also known as    
 Composer/Core Source    Robert Mackintosh
 Region    Scotland
 Genre/Style    Scottish
 Meter/Rhythm    Reel (single/double)
 Key/Tonic of    G
 Accidental    1 sharp
 Mode    Ionian (Major)
 Time signature    4/4
 History    
 Structure    AAB
 Editor/Compiler    Robert Mackintosh
 Book/Manuscript title    Book:A Fourth Collection of New Strathspey Reels
 Tune and/or Page number    p. 28
 Year of publication/Date of MS    1804
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   (1)   



X:1 T:Miss Wildman’s Reel C:Robert Mackintosh M:C L:1/8 R:Reel B:Robert Mackintosh – “A Fourth Collection of New Strathspey Reels, also some Famous old Reels” (1804, p. 28) N:Dedicated to the Dutchess [sic] of Manchester N:Robert “Red Rob” Mackintosh (c. 1745-1808) was a Scottish violinist and N:composer active in Edinburgh at the end of the 18th century. Originally from N:Tullymet, near Pitlochry, Perthshire. He moved to London in the last decade N:of his life. Z:AK/Fiddler’s Companion K:G d|B2 AG DGBd|GBdg a(aac)|TB2 AG DGBd|c(e~dc B)GG:| d|(B>cd)g (ceg)c|BdgB a(AAc)|(Bdg)B cegc|BdAc (BGGc)| (B>cd)g (ceg)c|BdgB a(AAc)|Bdgb ceag|fdef gGG||