Butchers of Bristol (2) (The): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Abctune | {{Abctune | ||
|f_tune_title=Butchers of Bristol (2) (The) | |f_tune_title=Butchers of Bristol (2) (The) | ||
|f_aka=Bealltaine, Buteown (2), Geary's Hornpipe, Mountain Groves (The), Mullingar Races (2), Raven Through the Bog, Rover through the Bogs, Taylor's Hornpipe | |f_aka=Bealltaine, Buteown (2), Geary's Hornpipe, Mountain Groves (The), Mullingar Races (2), Raven Through the Bog, Rover through the Bogs, Taylor's Hornpipe, XYZ | ||
|f_country=England, Ireland | |f_country=England, Ireland | ||
|f_genre=English, Irish | |f_genre=English, Irish | ||
Line 61: | Line 61: | ||
<section begin=X1 /> | <section begin=X1 /> | ||
X:1 | X:1 | ||
T: | T:XYZ | ||
M:C| | M:C| | ||
L:1/8 | L:1/8 |
Revision as of 23:09, 22 December 2021
X:1 T:Butchers of Bristol [2] M:C| L:1/8 R:Reel or Hornpipe B:John Rook music manuscript collection (1840, Waverton, B:near Wigton, Cumbria, p. 99) Z:AK/Fiddler's Companion K:G GABG ABcA|d2d2 cAFA|B3A A3A|GABG GFED| GABG ABcA|d2d2 cAFA|B2 AG DGFA|G2G2 G4|| gfga g2d2|gfba g2d2|f2f2 fagf|e2c2c2 dc| B2 GB A2 FA|B2 GB|A2 FA|BcdG DGFA|G2G2 G4:|]
X:1
T:The Butchers of Bristol [2]
T:Taylor's Hornpipe
T:Geary's Hornpipe
D:Patrick Street
M:C|
L:1/8
R:Hornpipe
S:Tommy Peoples - Workshop 7/17/01
Z:AK/Fiddler's Companion
K:G
DGBG ABcA | defa {g/a/} gedc | ~B3d ~c3A | E/F/G AF DEFD |
G2 BG AB{c/d/}cA | B/c/d fa {g/a/}gedc | B2 dB {d}cAFG | {A/B/}A2 G2 G4 :|
|: ~g3a {a}gfde | {g/a/}g2 af gfde | ~f3g afge | Adfe dcAF |
G2 BG AB{c/d/}cA | B/c/d fa {g/a/}gedc | B2 dB {d}cAFG | {A/B/}A2 G2 G4 :|
X:1
T:XYZ
M:C|
L:1/8
R:Country Dance Tune
N:The tune is named for a famous racehorse.
B:William Green Thomas music manuscript collection
B:http://www.farnearchive.com/show_images.asp?id=R0606202&image=1
N:Tom Green (1825-1898) was piper to the Duchess of Northumberland.
Z:AK/Fiddler's Companion
K:Gmin
D2|G2 B-G ABcA|d2 f0d cAFA|B2 dB A2 cA|G2 B-G ^F2 =ED|
G2 BG ABcA|d2 (fd) cAFA|BABG DG^FA|G2G2G2:|
|:d2|g^fga g2d2|g^fga g2d2|=f=efg fagf|e2c2c2 dc|
B2 GB A2 FA|B2 GB A2 FA|BABG DG^FA|G2G2G2:|]