Dalkeith's Lament: Difference between revisions
(Created page with "{{Abctune |f_tune_title=Dalkeith's Lament |f_composer=J. Scott Skinner |f_country=Scotland |f_genre=Pipe, Scottish |f_rhythm=Air/Lament/Listening Piece |f_time_signature=6/8 |...") |
No edit summary |
||
Line 15: | Line 15: | ||
|f_page=p. 74 | |f_page=p. 74 | ||
|f_theme_code_index=1351 5427bL | |f_theme_code_index=1351 5427bL | ||
|f_score=1 | |||
}} | }} | ||
<!-- THIS IS FOR SEARCH ENGINE OPTIMIZATION --> | |||
<!-- ************ DON'T TOUCH ************* --> | |||
{{#seo:¬¬¬¬ | |||
|keywords=fiddle tune finder, find recordings, irish fiddle tunes, original folk music, abc music finder, english country dance, old-time music | |||
|description=The semantic index of North American, British and Irish traditional instrumental music with annotations | |||
|image=TUC-160x120.png | |||
|image_alt=Traditional universal music | |||
}} | |||
<!-- ************ PLEASE!!!!! ************* --> | |||
<font face="sans-serif" size="4"> | |||
<div class="noprint"> | <div class="noprint"> | ||
<!-- SUBSTITUTE THE ABC NOTATION BELOW (BETWEEN THE <SECTION BEGIN /><SECTION END /> TAGS) WITH YOUR OWN NOTATION (IF ANY) --> | |||
[[ANNOTATION:{{PAGENAME}}|{{PAGENAME}}: Annotations]] | |||
</div> | </div> | ||
< | </font> | ||
<font face="sans-serif" size="2"> | |||
---- | ---- | ||
<section begin=abc /> | <section begin=abc /> | ||
T:Dalkeith's Lament | T:Dalkeith's Lament | ||
M:6/8 | M:6/8 | ||
Line 42: | Line 54: | ||
<section begin=X1 /> | <section begin=X1 /> | ||
<section end=X1 /> | <section end=X1 /> | ||
</font> | |||
<font face="sans-serif" size="4"> | |||
<div class="noprint"> | <div class="noprint"> | ||
[[ANNOTATION:{{PAGENAME}}|{{PAGENAME}}: Annotations]] | |||
</div> | </div> | ||
</font> | |||
__NOTITLE__ | __NOTITLE__ | ||
X:1 |
Revision as of 19:12, 9 December 2023
T:Dalkeith's Lament M:6/8 L:1/8 R:Pipe Air C:J. Scott Skinner N:4th measure, 2nd strain can be played |ecA dBG| B:Skinner - Logie Collection (1888, p. 74) Z:AK/Fiddler's Companion K:Amix E|A>BA c2d|edB A2 B/d/|edB dBG|BAG G2B| A>BA ABd|ed[Be] g2a|edg edB|{GB}A2 A A2|| c/d/|e>fe d2e|c2d B2e|A>BA c2d|ecA (B2e)| A>BA c2d|edc g2a|edg edB|{GB}A2A A2||
X:1