Bobbers of Brechin

Find traditional instrumental music
Revision as of 00:48, 31 May 2017 by Andrew (talk | contribs)


Bobbers of Brechin  Click on the tune title to see or modify Bobbers of Brechin's annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Bobbers of Brechin
Query the Archive
Query the Archive
 Theme code Index    51H1H5 47b54
 Also known as    Bober's o' Brechin, Robbers of Brechin, Strathbogie Toast (The)
 Composer/Core Source    William Marshall
 Region    Scotland
 Genre/Style    Scottish
 Meter/Rhythm    Reel (single/double)
 Key/Tonic of    G
 Accidental    2 flats
 Mode    Aeolian (minor)
 Time signature    4/4
 History    
 Structure    AB, AABB
 Editor/Compiler    Biography:Niel & Nathaniel Gow
 Book/Manuscript title    Book:Complete Repository Part 1
 Tune and/or Page number    p. 10
 Year of publication/Date of MS    1799
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   ()   




X:1
%
T:Bober's o' Brechin
M:C
L:1/8
R:Reel
S:Gow - 1st Repository  (1799)
Z:AK/Fiddler's Companion
K:Gmin
g|dg~g^f g2 d=f|cdfg dfcf|dgg^f ge dg|fdc>A {A}G2 GB|
Ggg^f g2 {fg}d=f|c>dfg afcf|d^fga bag=f|dfc>A {A}G2G||
d|BGdG BGd=e|f>d c<f AFcA|BGdG BGdg|fdc>A {A}G2 Gd|
BGdG BGd=e|f.dcf AfcA|GABc d=efg|f>dc>A {A}G2G||
X:1
%
T:Bobbers o’ Brechin, The
M:C|
L:1/8
R:Reel
B:Robert Millar music manuscripts c. 1823
N:Miller (1789-1861) was born in Perth and was a member
N:of the Forfar Militia. Later moved to Dundee and became a pipemaker,
N:and performer on the Northumbrian, Union and Great Highland Bagpipes.
Z:AK/Fiddler’s Companion
K:A
a|eaag a2 e=g|de=ga eadg|eaag a2 ea|=gedB {B}A2 AB|
Aaag a2 e=g|de=ga gede|de=ga egdg|egdB A2 A:|
|:e|AAeA =cAef|T=g>edg BGdB|AAeA =cAca|=gedB A2 Ae|
AAeA =cAef|T=g>edg|BGdB|AB=cd efga|=g>edB A2A:|]
X:1
%
T:Bobbers of Brechin, The
M:C
L:1/8
R:Reel
C:”Mr. Marshall”
B:Davies Caledonian Repository (Aberdeen, 1829-30, p. 15)
Z:AK/Fiddler’s Companion
K:Gmin
g|d<gg>^f ~g2 d=f|cdfg dfcf|d<gg^f ~g2 dg|fdc>A {A}G2 GB|
G<gg^f g2 d=f|cdfg afcf|d^fga bag=f|d<gc>A {A}G2 G||
d|BGdG BGd=e|fdc<f AFcA|BGdG BGdg|fdcA {A}G2 Gd|
BGdG BGd=e|fdcf AFcA|GABc d=efg|f<dc>A {A}G2G||