Callam Shiarghlas

Find traditional instrumental music
Revision as of 18:38, 14 December 2018 by Andrew (talk | contribs)


Callam Shiarghlas  Click on the tune title to see or modify Callam Shiarghlas's annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Callam Shiarghlas
Query the Archive
Query the Archive
 Theme code Index    1H47L2 1H31H2H
 Also known as    Calum Beag (2), Grim Malcolm
 Composer/Core Source    
 Region    Scotland
 Genre/Style    Scottish
 Meter/Rhythm    March/Marche
 Key/Tonic of    F
 Accidental    1 flat
 Mode    Ionian (Major)
 Time signature    4/4
 History    
 Structure    AB
 Editor/Compiler    Biography:Niel Gow
 Book/Manuscript title    Book:Third Collection of Niel Gow's Reels
 Tune and/or Page number    p. 25
 Year of publication/Date of MS    1792
 Artist    Biography:Puirt a Baroque
 Title of recording    Kinloch's Fancy
 Record label/Catalogue nr.    
 Year recorded    1997
 Media    
 Score   ()   


Tune Graph (Help)

{{ #viki:pageTitles=Callam Shiarghlas|width=1100|height=600|delimiter=,| }} Callam Shiarghlas: Annotations


X:1 T:Callam Shiarghlas M:C L:1/8 R:March B:Gow - 3rd Collection of Niel Gow's Reels, 3rd ed., p. 25 (orig. 1792) Z:AK/Fiddler's Companion K:F (a/g/)|fF {B}AG/F/ E(GG) a/g/|fFAc f2 {g}fe/d/|cF {B}AG/F/ E(GG)A|DE/F/ CD/E/ {E}F2F:|| c|Tf>g af {g}fe/d/ cc|Tf>g a/g/a/b/|{b}g2 c>c|(f/e/).f/.g/ (f/g/)a/b/ adda|gc (e/f/g/)/e {e}Tf2 fc| Tf>g {f/g/}a>f {g}fe/d/ cc|Tf>g (a/g/)a/b/ {a}Tg2 c>c|Tf/e/f/g/ (f/g/)a/b/ (a/g/)f/e/ (d/e/)f/a/|gc (e/f/g/)e/ {e}Tf2 f||


X:2 T:Callam Shiarghlas M:C L:1/8 R:March S:Surenne - Dance Music of Scotland, pp. 124-125 (1852) Z:AK/Fiddler's Companion K:F a/g/ | f>F (B/A/G/F/) (E<G) Ga/g/ | f>FA>c f2 (g/f/e/d/) | c>F (B/A/G/F/) (E<G)G>A | DE/F/ CD/E/ F3a/g/ | f>F (B/A/G/F/) (E<G) Ga/g/ | f>FA>c f2 (g/f/e/d/) | c>F (B/A/G/F/) (E<G)G>A | DE/F/ CD/E/ F3 || c | f>ga>f (g/f/e/d/) c>c | f>g (a/g/a/b/) g2 c>c | (f/e/f/g/) (f/g/a/b/) (a<d)d>a | g>d (e/f/g/e/) f3c | f>ga>f (g/f/e/d/) c>c | f>g (a/g/a/b/) g2 c>c | (f/e/f/g/) (f/g/a/b/) (a<d)d>a | g>d (e/f/g/e/) f3 ||