Coilantogle

Find traditional instrumental music
Revision as of 06:29, 11 October 2010 by Andrew (talk | contribs) (Created page with '{{Abctune |f_tune_title=Coilantogle |f_country=Scotland |f_genre=Scottish |f_rhythm=Strathspey |f_time_signature=4/4 |f_key=G |f_accidental=2 flats |f_mode=Aeolian (minor) |f_str…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Coilantogle  Click on the tune title to see or modify Coilantogle's annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Coilantogle
Query the Archive
Query the Archive
 Theme code Index    5L127bL 5L121H
 Also known as    
 Composer/Core Source    
 Region    Scotland
 Genre/Style    Scottish
 Meter/Rhythm    Strathspey
 Key/Tonic of    G
 Accidental    2 flats
 Mode    Aeolian (minor)
 Time signature    4/4
 History    
 Structure    AB
 Editor/Compiler    Biography:J.T. Surenne
 Book/Manuscript title    Book:Dance Music of Scotland
 Tune and/or Page number    pp. 98-99
 Year of publication/Date of MS    1852
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   ()   


COILANTOGLE. Scottish, Strathspey. G Minor. Standard tuning (fiddle). AB (Surenne): AABB (Williamson). "Coilantogle, at the foot of Ben Ledi in Perthshire, was for long an important ford on the river Teith, and was a key point on the ways to the North. Sir Walter Scott refers to it as such in his poem 'The Lady of the Lake' (Williamson, 1976)."

Printed sources: Surenne (Dance Music of Scotland), 1852; pp. 98-99. Williamson (English, Welsh, Scottish and Irish Fiddle Tunes), 1976; p. 63.


X:1
T:Coilantogle
M:C
L:1/8
R:Strathspey
S:Surenne - Dance Music of Scotland, pp. 98-99  (1852)
Z:AK/Fiddler's Companion
K:Gmin
(D<G)G>B A>GF>C | (D<G)G>B A>G g2 | (f<a)(d<f) (c<f)A>F | D>GB>G A>^F G2 | 
(D<G)G>B A>GF>C | (D<G)G>B A>G g2 | (f<g)(d<f) (c>f)A>F | D>GB>G A>^F G2 || 
(G<g)g>a f>c f2 | (G<g)g>a ^f>d g2 | (=f<a)(d<f) (c<f)A>F | D>GB>G A>=F G2 | 
(G<g)g>a f>c f2 | (G<g)g>a ^f>d g2 | (=f<a)(d<f) (c<f)A>F | D>GB>G A>=F G2 ||