Reel (193)

Find traditional instrumental music
Revision as of 02:59, 18 July 2024 by Andrew (talk | contribs) (Created page with "{{Abctune |f_tune_title=Reel (193) |f_country=Scotland |f_genre=Scottish |f_rhythm=Air/Lament/Listening Piece, Reel (single/double) |f_time_signature=4/4 |f_key=A |f_accidental=2 sharps |f_mode=Mixolydian |f_history=SCOTLAND(Western Isles) |f_structure=ABB |f_book_title=A Collection of Highland Vocal Airs |f_collector=Patrick MacDonald |f_year=1784 |f_page=No. 182, p. 31 |f_theme_code_index=3165 1H522 |f_score=1 }} <!-- THIS IS FOR SEARCH ENGINE OPTIMIZATION --> <!-- **...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Reel (193)  Click on the tune title to see or modify Reel (193)'s annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Reel (193)
Query the Archive
Query the Archive
 Theme code Index    3165 1H522
 Also known as    
 Composer/Core Source    
 Region    Scotland
 Genre/Style    Scottish
 Meter/Rhythm    Air/Lament/Listening Piece, Reel (single/double)
 Key/Tonic of    A
 Accidental    2 sharps
 Mode    Mixolydian
 Time signature    4/4
 History    SCOTLAND(Western Isles)
 Structure    ABB
 Editor/Compiler    Biography:Patrick MacDonald
 Book/Manuscript title    Book:A Collection of Highland Vocal Airs
 Tune and/or Page number    No. 182, p. 31
 Year of publication/Date of MS    1784
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   (1)   



X:1 T:Reel [193] M:C L:1/8 R:Reel or Air N:”A St. Kilda song and dance.” Q:"Brisk" B:Patrick MacDonald – “Collection of Highland Vocal Airs” (Edinburgh, 1784,) N:MacDonald was Minister of Kilmore in Argyleshire. The volume is N:dedicated to the ‘Gentlemen of the Highland Society in London’. F:https://www.google.com/books/edition/A_Collection_of_Highland_Vocal_Airs_To_w/XCvLHYWLkFcC?hl=en&gbpv=1&printsec=frontcover Z:AK/Fiddler’s Companion K:A d|cAA=g f2 ef|a2 ec BB B2|EAAA Tf2 ea|e2 dc Bc A2| cAA=g f2 ef|a2 ec BB B2|e2 AA Tc2 Bc|e2 cB AA A2|| |:e2AA Tc2 Bc|e2 dc BB B2|e2 AA c2 Bc|{c}e2 cB AA A2:|