Haughs of Delvin (The): Difference between revisions
m (Text replace - "[[{{TALKPAGENAME}}|Tune Discussion]] " to "[[Annotation:{{PAGENAME}}|Tune annotation]]") |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 15: | Line 15: | ||
|f_page=p. 15 | |f_page=p. 15 | ||
|f_theme_code_index=513b5 5124 | |f_theme_code_index=513b5 5124 | ||
|f_score=1 | |||
}} | }} | ||
<!-- | <font face="sans-serif" size="4"> | ||
<div class="noprint"> | |||
<!-- SUBSTITUTE THE ABC NOTATION BELOW (BETWEEN THE <SECTION BEGIN /><SECTION END /> TAGS) WITH YOUR OWN NOTATION (IF ANY) --> | |||
[[ANNOTATION:{{PAGENAME}}|{{PAGENAME}}: Annotations]] | |||
</div> | |||
</font> | |||
<font face="sans-serif" size="2"> | |||
---- | ---- | ||
< | <section begin=abc /> | ||
X:1 | X:1 | ||
T:Haughs of Delvin, The | T:Haughs of Delvin, The | ||
Line 33: | Line 40: | ||
{f}e^d/e/ Bg eBge|(f/e/^d/)e/ Bg f=daf|e^d/e/ Bg eBge|(fd) (BG) (FD)AF| | {f}e^d/e/ Bg eBge|(f/e/^d/)e/ Bg f=daf|e^d/e/ Bg eBge|(fd) (BG) (FD)AF| | ||
{f}e^d/e/ Bg eBge|(f/e/^d/)e/ Bg f=daf|e/B/e/g/ (b/a/g/).f/ (g/f/e/).^d/ (e/=d/c/).B/|(c/B/A/G/) (F/G/A/G/) FDAF|| | {f}e^d/e/ Bg eBge|(f/e/^d/)e/ Bg f=daf|e/B/e/g/ (b/a/g/).f/ (g/f/e/).^d/ (e/=d/c/).B/|(c/B/A/G/) (F/G/A/G/) FDAF|| | ||
<section end=abc /> | |||
</ | <!-- FROM HERE ON YOU'RE ALLOWED TO ENTER MULTIPLE ABC NOTATED TUNES DUPLICATING <SECTION BEGIN /><SECTION END /> AS MUCH AS YOU NEED --> | ||
---- | <section begin=X1 /> | ||
[[ | <section end=X1 /> | ||
< | </font> | ||
<font face="sans-serif" size="4"> | |||
<div class="noprint"> | |||
[[ANNOTATION:{{PAGENAME}}|{{PAGENAME}}: Annotations]] | |||
</div> | |||
</font> | |||
__NOTITLE__ |
Latest revision as of 04:55, 18 November 2019
X:1 T:Haughs of Delvin, The M:C L:1/8 R:Strathspey N:"Slow" C:Nathaniel Gow (1863-1831) B:Gow - Sixth Collection of Strathspey Reels (1822) Z:AK/Fiddler's Companion K:Emin B(3A/G/F/ EB GEBE|B(3A/G/F/ EG FDAF|B(3A/G/F/ EB GEBG|(B/^c/d) (B/c/d) FDAF| B(3A/G/F/ EB GEBE|B(3A/G/F/ EG FDAF|B(3A/G/F/ EB GEBG|(B/^c/d) (B/c/d) FDAF|| {f}e^d/e/ Bg eBge|(f/e/^d/)e/ Bg f=daf|e^d/e/ Bg eBge|(fd) (BG) (FD)AF| {f}e^d/e/ Bg eBge|(f/e/^d/)e/ Bg f=daf|e/B/e/g/ (b/a/g/).f/ (g/f/e/).^d/ (e/=d/c/).B/|(c/B/A/G/) (F/G/A/G/) FDAF||