Reel (168)

Find traditional instrumental music
Revision as of 16:33, 9 June 2024 by Andrew (talk | contribs)


Reel (168)  Click on the tune title to see or modify Reel (168)'s annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Reel (168)
Query the Archive
Query the Archive
 Theme code Index    1H1H35 7b7b24
 Also known as    
 Composer/Core Source    
 Region    Scotland
 Genre/Style    Pipe, Scottish
 Meter/Rhythm    Reel (single/double)
 Key/Tonic of    G
 Accidental    NONE
 Mode    Mixolydian
 Time signature    4/4
 History    
 Structure    ABAC
 Editor/Compiler    Biography:Finlay Dunn & George Farquhar Graham
 Book/Manuscript title    Book:Celtic Melodies Being a Collection of Original Slow Highland Airs Pipe-Reels and Cainntearachd
 Tune and/or Page number    No. 68, pp. 40-41
 Year of publication/Date of MS    c. 1830
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   (1)   



X:1 T:Reel [168] M:C L:1/8 R:Pipe Reel B:Finlay Dunn & George Farquhar Graham – “Celtic Melodies, Being a B:Collection of Original Slow Highland Airs, Pipe-Reels, and B:Cainntearachd, vol. 1” (Edinburgh, c. 1830, No. 68) Z:AK/Fiddler's Companion K:G V:1 f<g f<g BGdB|e<=f e<=f AFcA|f<g f<g BGdB|deBG A=FcA| f<g f<g BGdB|e<=f e<=f AFcA|g2 fg afgd|B2 GB G=FcA|| cd Gd BGdG|B/c/d Gc A=FcF|B/c/d Gd BGdG|dedB AFcA| cd Gd BGdG|B/c/d Gc A=FcA|B/c/d Gd BGdB|ecdB A=FcA|| f<g f<g BGdB|e<=f e<=f AFcA|f<g f<g BGdB|dedB A=FcA| f<g f<g BGdB|e<=f e<=f AFcA|g2 fg afgd|B2 GB A=FcA|| BGG2 BGdc|BG G2 A=FcA|BG G2 BGdB|dedB A=Fc>A| BG G<G BGd>c|BG G<G AFc>A|B/c/d Gd BGdB|dedB A=FcA|| V:2 clef = bass G,2G,2G,2G,2|=F,2F,2F,2F,2|G,2G,2G,2G,2|B,2D2=F,2F,2| G,2G,2G,2G,2|=F,2F,2F,2F,2|G,2G,2G,2B,2|G,2G,2=F,2F,2|| G,2G,2G,2G,2|G,2G,2=F,2F,2|G,2G,2G,2G,2|B,2B,2=F,2F,2| G,2G,2G,2G,2|G,2G,2=F,2F,2|G,2G,2G,2G,2|B,2D2=F,2F,2|| G,2G,2G,2G,2|=F,2F,2F,2F,2|G,2G,2G,2G,2|B,2D2=F,2F,2| G,2G,2G,2G,2|=F,2F,2F,2F,2|G,2G,2G,2B,2|G,2G,2=F,2F,2|| G,2G,2G,2G,2|G,2G,2=F,2F,2|G,2G,2G,2G,2|B,2D,2=F,2F,2| G,2G,2G,2G,2|G,2G,2=F,2F,2|G,2G,2G,2G,2|B,2D2=F,2F,2||