Reel (168)

Find traditional instrumental music


Reel (168)  Click on the tune title to see or modify Reel (168)'s annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Reel (168)
Query the Archive
Query the Archive
 Theme code Index    1H1H35 7b7b24
 Also known as    
 Composer/Core Source    
 Region    Scotland
 Genre/Style    Pipe, Scottish
 Meter/Rhythm    Reel (single/double)
 Key/Tonic of    G
 Accidental    NONE
 Mode    Mixolydian
 Time signature    4/4
 History    SCOTLAND(Highland)
 Structure    ABAC
 Editor/Compiler    Biography:Finlay Dunn & George Farquhar Graham
 Book/Manuscript title    Book:Celtic Melodies Being a Collection of Original Slow Highland Airs Pipe-Reels and Cainntearachd
 Tune and/or Page number    No. 68, pp. 40-41
 Year of publication/Date of MS    c. 1830
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   (1)   



X:1 T:Reel [168] M:C L:1/8 R:Pipe Reel B:Finlay Dunn & George Farquhar Graham – “Celtic Melodies, Being a B:Collection of Original Slow Highland Airs, Pipe-Reels, and B:Cainntearachd, vol. 1” (Edinburgh, c. 1830, No. 68) Z:AK/Fiddler's Companion K:G V:1 f<g f<g BGdB|e<=f e<=f AFcA|f<g f<g BGdB|deBG A=FcA| f<g f<g BGdB|e<=f e<=f AFcA|g2 fg afgd|B2 GB G=FcA|| cd Gd BGdG|B/c/d Gc A=FcF|B/c/d Gd BGdG|dedB AFcA| cd Gd BGdG|B/c/d Gc A=FcA|B/c/d Gd BGdB|ecdB A=FcA|| f<g f<g BGdB|e<=f e<=f AFcA|f<g f<g BGdB|dedB A=FcA| f<g f<g BGdB|e<=f e<=f AFcA|g2 fg afgd|B2 GB A=FcA|| BGG2 BGdc|BG G2 A=FcA|BG G2 BGdB|dedB A=Fc>A| BG G<G BGd>c|BG G<G AFc>A|B/c/d Gd BGdB|dedB A=FcA|| V:2 clef = bass G,2G,2G,2G,2|=F,2F,2F,2F,2|G,2G,2G,2G,2|B,2D2=F,2F,2| G,2G,2G,2G,2|=F,2F,2F,2F,2|G,2G,2G,2B,2|G,2G,2=F,2F,2|| G,2G,2G,2G,2|G,2G,2=F,2F,2|G,2G,2G,2G,2|B,2B,2=F,2F,2| G,2G,2G,2G,2|G,2G,2=F,2F,2|G,2G,2G,2G,2|B,2D2=F,2F,2|| G,2G,2G,2G,2|=F,2F,2F,2F,2|G,2G,2G,2G,2|B,2D2=F,2F,2| G,2G,2G,2G,2|=F,2F,2F,2F,2|G,2G,2G,2B,2|G,2G,2=F,2F,2|| G,2G,2G,2G,2|G,2G,2=F,2F,2|G,2G,2G,2G,2|B,2D,2=F,2F,2| G,2G,2G,2G,2|G,2G,2=F,2F,2|G,2G,2G,2G,2|B,2D2=F,2F,2||