Reynardine Hornpipe (2)

Find traditional instrumental music


Reynardine Hornpipe (2)  Click on the tune title to see or modify Reynardine Hornpipe (2)'s annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Reynardine Hornpipe (2)
Query the Archive
Query the Archive
 Theme code Index    3215L 1116L
 Also known as    Bantry Bay Hornpipe (1), Union Hornpipe (2)
 Composer/Core Source    
 Region    Ireland
 Genre/Style    Irish
 Meter/Rhythm    Hornpipe/Clog
 Key/Tonic of    G
 Accidental    1 sharp
 Mode    Ionian (Major)
 Time signature    2/2
 History    
 Structure    AABB
 Editor/Compiler    Biography:Patrick Reidy
 Book/Manuscript title    Book:Patrick Reidy music manuscript collection
 Tune and/or Page number    No. 33
 Year of publication/Date of MS    c. 1890's
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   (1)   




X:1 T:Reynardine Hornpipe [2] M:C| L:1/8 R:Hornpipe S:Daniel Darby Kelleher, Castleisland, Co. Kerry S:P.D. Reidy music manuscript collection, London, 1890’s (No. 33) N:”Professor” Patrick Reidy of Castleisland was a dancing N:master engaged by the Gaelic League in London to teach N:dance classes. He introduced “Siege of Ennis” and “Walls N:of Limerick” ceili dances and wrote a treatise on dancing. N:Reidy's source, Daniel Kelleher, was variously said to have been N:from Castleisland, Sliabh Luachra region, County Kerry, or from N:the native-Irish speaking region of Achadh Bolg, Múscraigh, in N:County Cork. Reg Hall (2017) also found a reference to Kelleher N:as one of the soloists who accompanied step dancing exhibitions N:at Gaelic League events in London between 1897 and 1901. According N:to Hall, Kelleher was a young fiddle player active within the N:Gaelic League. His name is attached to thirteen tunes in Reidy’s N:collection. F: http://rarebooks.library.nd.edu/digital/bookreader/MSE_1434-1/#page/1/mode/1up Z:AK/Fiddler’s Companion K:G (d>c)|BdAB GEDE|G2 (GA) G2 (EG)|AGAB cBAG|E2A2 AGAB| c2 (ec) B2 (dB)|ABAG E2 (dc)|BdAB GEDE|G2 G>G G2:| |:(B>c)|dBGB dBGB|dcde d2 (Bd)|gfge defa|g2 g>g g2 (Bd)| g2 (gd) edBd|gfgd (3efg (dc)|BABG EGDE|G2 G>G G2:|]