Sir George MacKenzie (1)

Find traditional instrumental music


Sir George MacKenzie (1)  Click on the tune title to see or modify Sir George MacKenzie (1)'s annotations. If the link is red you can create them using the form provided.Browse Properties <br/>Special:Browse/:Sir George MacKenzie (1)
Query the Archive
Query the Archive
 Theme code Index    5346 5342
 Also known as    
 Composer/Core Source    Biography:Niel Gow
 Region    Scotland
 Genre/Style    Scottish
 Meter/Rhythm    Reel (single/double)
 Key/Tonic of    A
 Accidental    3 sharps
 Mode    Ionian (Major)
 Time signature    4/4, 2/2
 History    
 Structure    AB, AAB
 Editor/Compiler    Biography:Niel and Nathaniel Gow
 Book/Manuscript title    Book:Fourth Collection of Strathspey Reels
 Tune and/or Page number    p. 11
 Year of publication/Date of MS    1800
 Artist    
 Title of recording    
 Record label/Catalogue nr.    
 Year recorded    
 Media    
 Score   (1)   



X:1 T:Sir George Mackenzie’s [1] M:C| L:1/8 R:Reel B:Niel & Nathaniel Gow – Fourth Collection of Strathspey B:Reels (1800, p. 11) Z:AK/Fiddler’s Companion K:A f|{f}e2 cA ~d2 fd|{f}e2 cA dBBa|{f}Te2 cA d3=g-|f>ded cAA:| ^g|(f/g/a) ec e2 eg|{fg}a2 ec fBBg|{g}a2 ec (e2 e>)(=g|f)ded cAA^g| (f/g/a) ec e2 eg|{fg}a2 ec fBBg|{g}a2 ec e2-e>(=g|f)ded cAA:|]


X:1 T:Sir George MacKenzie's Reel T:Sir George MacKenzie [1] M:C| L:1/8 R:Reel B:J. Anderson - Anderson's Budget of Strathspeys, Reels & Country Dances B: for the German Flute or Violin (Edinburgh, c. 1820, p. 2) Z:AK/Fiddler's Companion K:A f|fecA d2 fd|e2cA dBBa|fecA d3=g|fded cAA:|| g|(f/g/a) ec eeg|(f/g/a) ec fBBg|a ec e2 e=g|fded cAAg| (f/g/a) ec e2 eg|fdec fBBg|aefc e3=g|fded cAA||


X:2 T:Sir George Mackenzie of Coul [1] T:Sir George MacKenzie [1] M:C L:1/8 R:Reel S:Surenne – Dance Music of Scotland, pg. 137 (1852) Z:AK/Fiddler’s Companion K:A f | e2 cA d2 fd | e2 cA dBBa | e2 cA e3=g | fded cAAf | e2 cA d2fd | e2 cA dBBa | e2 cA e3=g | fded cAA || g | (f/3g/2<a) ec e3f | (f/4g/2<a) ec fBBg | a2 ec e3=g | fded cAAg | (f/4g/2<a) ec e3g | (f/4g/2<a) ec fBBg | a2 ec e3=g | fded cAA ||